
PORTILLO 1 

Neutron Star Core Equations of State and 
the Maximum Neutron Star Mass 

Stephen K N PORTILLO  

Introduction 
Neutron stars are the compact remnants of massive stars after they undergo core collapse. As the core 

collapses and density increases, protons are converted into neutrons via beta capture. If the progenitor 

star is very massive, the core cannot stop collapsing before reaching its Schwarszchild radius and a black 

hole is formed. However, for a range of progenitor star masses, the core is supported against collapse by 

neutron degeneracy pressure at a radius of       . The gravitational energy released by the core’s 

collapse to such a small radius powers a core collapse supernova. 

The equation of state of neutron star cores remains a great mystery. The interactions between nucleons 

are governed by the strong nuclear force. Quantum chromodynamics (QCD) governs the strong 

interactions between the quarks and gluons that comprise nucleons, but is intractable for calculations at 

low temperature and high density. Neutron star cores contain matter denser than atomic nuclei 

(                  ), thus terrestrial experiments on nuclei yield limited insight to the equations 

of state of neutron star cores. 

An effective nuclear field theory is used to calculate these equations of state. The interactions are only 

directly testable at nuclear densities, leading to uncertainties at higher densities. The many body 

problem cannot be solved exactly, necessitating approximations. The methods of calculation can be 

classified into two branches. In the first, interactions are calculated between particles in vacuum using a 

perturbation expansion in Feynman diagrams. In the second, interactions in a dense baryonic medium 

are rewritten into an effective Hamiltonian. 

Neutron stars are so compact that the stellar structure equations must also be modified to account for 

General Relativity. Solving the Einstein equations for a time-invariant, spherically symmetric for a fluid in 

hydrostatic equilibrium yields the Tolman-Oppenheimer-Volkoff equation. Effects of General Relativity 

also establish a maximum stable neutron star mass which depends strongly on the “stiffness” of the 

equation of state. Equations of state with higher pressures for a given energy density are said to be 

“stiffer” (and the opposite deemed “softer”); stiffer equations of state produce higher maximum 

masses. 

Neutron star cores may contain exotic components beyond nucleons and leptons at densities beyond 

the nuclear density. Nucleons may convert into hyperons (baryons with strange quarks) via strangeness 

changing weak interactions         . Pions and kaons, mesons of nuclear field theory, could also 

form condensates. Finally, quarks may become deconfined from baryons. 
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This work will focus on the constraints placed by the maximum neutron star mass. First, nucleonic 

compositions will be discussed and stellar models constructed for the Heiselberg & Hjorth-Jensen 

equations of state. Then, exotic compositions will be qualitatively discussed. The measured mass of 

millisecond pulsar J1614-2230 of                (Demorest 2010) strongly constrains exotic equations 

of state; some recent literature concerning these constraints will be highlighted. 

Nucleonic Equations of State 
Perhaps the simplest nucleonic equations of state are those which exclude the nucleonic interactions. 

After deriving the Tolman-Oppenheimer-Volkoff equation Oppenheimer and Volkoff (1939) created 

neutron star models assuming an ideal neutron gas, yielding a maximum mass of          . However, 

this mass is smaller than the stellar cores that collapse into neutron stars. Harrison et al. (1958) 

considered a neutron, proton, electron ideal gas in equilibrium with the beta decay and capture 

processes. The inclusion these components slightly softened the equation of state, yielding a maximum 

mass of          . Cameron (1959) pointed out, using effective nucleon interactions by Skyrme (1959), 

that nuclear interactions could stiffen the equation of state. Repulsive interactions would increase 

pressure and allow higher maximum masses of about         . 

Nucleonic equations of state can be tested at the density    through nuclear experiments. Since the 

strong nuclear force has isospin symmetry, if protons and neutrons are switched, the strong interaction 

should remain unchanged. Thus, the strong interaction should only involve even powers of the neutron 

fraction excess            . Since experiments test nuclear interactions with nuclei at around    

and almost even proton and neutron numbers, the energy from nucleonic interactions is commonly 

written in a Taylor series in   around    and       around   (Lattimer 2012) 
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We consider a class of equations of state (including arguments from Haensel et al. 2007) with an analytic 

expression for the interaction energy in the similar form 
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, the energy per nucleon. 

The electrons and muons are treated as ideal non-interacting Fermi gases. Thus, the total energy per 

nucleon also consists of the rest mass energy of the nucleons (   ), energy of the electrons (  ), and 

energy of the muons (  ) 
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Beta equilibrium relates the chemical potentials of all the components. Assuming that the neutron star 

is transparent to neutrinos,    
    

  , and thus 
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At neutron star densities the electrons are ultra-relativistic, whereas the muons are somewhat 

relativistic (if they are present at all) 
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Using the condition of beta equilibrium          
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Using          in taking the derivatives 
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Cancelling similar terms on both sides and taking       
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Now using the electric neutrality condition          
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So we have two equations to determine       for each nucleonic density   . Using the nuclear 

saturation density              gives 
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Muons are only present when        

 

          
 

 . Numerically, we can find the   at which 

  

 

          
 

 ; below this density, muons are absent and    is determined solely by 
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We will consider  ( )  ( ) obtained by Heiselberg and Hjorth-Jensen (2000) from fitting to the Akmal 

et al. (1998) equation of state 
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Which corresponds to            .             determines the stiffness of the equation of 

state: low   gives a stiffer equation of state.   is also related to the incompressibility    
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The composition of the matter at each   is independent of  . The density at which muons appear is 

        for the Heiselberg and Hjorth-Jensen (hereforth HHJ) equations of state. 

 

Figure 1. Proton (gold), electron (crimson), and muon (blue) fractions as a function of density in the HHJ equation of state. 
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Since the muons are an ultrarelativistic Fermi gas and the muons are a Fermi gas 
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If   and    are measured in    ,                 
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The nucleonic pressure can be found via the thermodynamic relation 
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So for every density  , we can calculate   and   by adding the nucleonic and leptonic contributions. 

 

Figure 2. Calculated HHJ equation of state for                 (blue, crimson, gold). 

We can also calculate the speed of sound and confirm that it is subluminal. 

  
  

  

  
 

The adiabatic index of the equation of state is around ranges from     to    . 
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Figure 3. Speed of sound of the HHJ equation of state for                 (blue, crimson, gold). 

 

Figure 4. Adiabatic index of the HHJ equation of state for                 (blue, crimson,gold). 

The neutron star equation of state is determined by the Tolman-Oppenheimer-Volkoff equation for 

hydrostatic equilibrium, mass conservation, and the equation of state 
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We solve the structure equations in the following crude way. A boundary condition on the central 

pressure    of the neutron star is established. Then the approximation is made for small    that 

            
  

 
  

  

  
  

Then the structure of the star is constructed in steps of    
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Continuing until    , at which the boundary condition        is deemed to be satisfied. Since 

neutron stars are        in radius,    of       is chosen to get      points of resolution in the 

model. We create neutron star models for a range of   ,                          , 

corresponding to           with parameter                                     . 

The static stability criterion is a necessary, but not sufficient, condition for the star to be stable against 

pulsation. Since    increases with    in the range considered (Haensel et al. 2007) 
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Also, the first mode of pulsation changes stability if and only if  ( ) reaches an extremum while 
  

   
   (Haensel et al. 2007). In the range of    considered,   decreases with increasing   . For all   

considered,  ( ) reaches an extremum at       (the left most points on Figure 5): the models with 

smaller radii are unstable since 
  

   
  ; thus, the models with larger radii must be stable. 
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Figure 5. Neutron star     relations for                                      (top to bottom: blue, crimson, 
gold, green, light blue, purple, brown). Increasing    goes from right to left                          . All models 
shown are stable, but other stable models with greater radius and lower mass (lower   ) are not shown. 

The mass of J1614-2230 excludes the        models to over   , corresponding to           . 

 

Figure 6. Maximum neutron star mass as a function of  . The mass of J1614-2230 (              ) is shown with a    
bar. 
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Exotic Equations of State 
Exotic particles may appear at densities a few times the nuclear density   . If these exotic particles are 

allowed to appear by the equation of state, they appear when the chemical potential of the nucleons 

rises above the energy required to create the exotic particle (rest mass and interaction energy). 

Equations of state that allow more exotic particles tend to be softer: the nucleon kinetic energy can 

become exotic particle rest mass, decreasing pressure. 

Because hyperonic equations of state are soft, they are constrained by the mass of J1614-2230. Ellis et 

al. (1990) considered equations of state including hyperons and allowing for the presence of   mesons, 

as well as first and second order transitions to deconfined quarks. None of their exotic equations of 

state can reach         . Weissenborn et al. (2012a) note that this mass may be reached if a repulsive 

vector meson, motivated by proposing a SU(3) flavour symmetry (2012b), is introduced, stiffening the 

equation of state. Katayama et al. (2012) independently find the same result for SU(3) flavour symmetry. 

Zdunik and Haensel (2012) find that a neutron star with a colour superconducting quark core could 

reach this mass. 

Conclusion 
Determining the neutron star equation of state is fraught with difficulties. Not only is the exact theory of 

strong interactions intractable for neutron star conditions, but also, the properties of matter beyond 

nuclear density cannot be tested by direct experiment. Thus, neutron star observations are important in 

determining the behaviour of matter at high densities. 

The mass of J1614-2230 provides a useful constraint on neutron star equations of state. Purely 

nucleonic equations of state are generally stiff enough not to be excluded. However, exotic equations of 

state are softer, and many long-standing exotic equations of state were excluded. This exclusion, along 

with theoretical motivations from particle physics, is guiding efforts to develop new exotic equations of 

state. 
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